Vai ai contenuti

Revisiting SCS: stimulation or conduction block? - Pathos

Salta menù

Revisiting SCS: stimulation or conduction block?


Short review

Pathos 2025; 32.2. Online 2025, Sept 19
_________________________________________________________________________________
Guido Orlandini
Medicina del dolore, Villa Ravenna (Chiavari, Ge)
_________________________________________________________________________________

Summary

As implied by its name, the concept of “stimulation” has always been considered fundamental to SCS, but a series of arguments now call this into question. The mechanism of action of SCS has always been considered to be the stimulation of the myelinated Aβ afferent fibers of the posterior columns with activation of the descending inhibitory pathway in the dorsolateral funiculus and a multisegmental analgesic effect, as well as stimulation of the Aβ fibers that penetrate the dorsal horn of the spinal cord with consequent activation of the inhibitory interneurons of the gelatinous substance and effect on the C fibers, the inhibitory GABA-B receptors on the second neuron, and the neuron of sympathetic origin. HFSCS and Burst-SCS, which do not evoke paresthesia, likely act through a completely different mechanism, focused not on the stimulation of Aβ fibers but on the “inhibition” of the multisynaptic ascending system (SAM) with a multisegmental effect on neuropathic pain from axonal neuropathy, on the Lissauer tract with an effect on nociceptive pain, and on the sympathetic origin neuron with a sympatholytic effect.

Riassunto

Com’è implicito nel nome, per la SCS è sempre stato considerato basilare il concetto di “stimolazione” ma una serie di argomentazioni lo mettono ora in discussione. Il meccanismo di azione della SCS è sempre stato considerato la stimolazione delle fibre afferenti mieliniche Aβ dei cordoni posteriori con attivazione della via discendente inibitoria nel Funicolo dorsolaterale ed un effetto antalgico plurisegmentale, nonché la stimolazione delle fibre Aβ che penetrano nel corno dorsale del midollo spinale con conseguente attivazione degli interneuroni inibitori della sostanza gelatinosa ed effetto sulle fibre C, dei GABA-B recettori inibitori sul 2°neurone e sul neurone di origine del simpatico. La HFSCS e la Burst-SCS che non evocano le parestesie agiscono verosimilmente con un meccanismo completamente diverso, incentrato non sulla stimolazione delle fibre Aβ ma sulla “inibizione” del sistema ascendente multisinaptico (SAM) con un effetto plurisegmentale sul dolore neuropatico da neuropatia assonale, del tratto di Lissauer con un effetto sul dolore nocicettivo e del neurone di origine del simpatico con un effetto simpaticolitico.

Parole chiave

Traditional SCS, High frequence SCS, Burst SCS  

Key words

SCS tradizionale, SCS ad alta frequenza, Burst-SCS

Introduction

The use of rudimentary electrostimulation for pain relief has ancient origins. It is referenced in third-millennium BC Egyptian graffiti depicting a fish emitting electricity. In 46 AD, Scribonius Largus wrote in Compositione medicamentorum liber that a live black torpedo ray should be applied to the painful area to treat headaches, and that patients with gout should stand on a torpedo ray until the part of the leg below the knee becomes numb. Although electrostimulation had been used in a crude form since ancient times, it only ceased to be an empirical treatment and became a codified clinical application when modern technology developed instruments to administer electricity in a controlled and measurable manner. This ushered in the so-called 'era of neuroadditive surgery'.
It is important to note that this terminology clearly emphasises a specific mechanism of action for these procedures: the addition of stimuli (stimulation and indirect inhibition), rather than the mechanism of direct inhibition. As Long [1977] observed, it is no coincidence that peripheral nerve stimulation (PNS) and spinal cord stimulation (SCS) were developed in the second half of the 1960s, shortly after Melzack and Wall's [1965] seminal work on the gate control theory. Although the gate control theory has never been proven beyond doubt, and Wall himself stated in 1973 that 'the most conclusive and perhaps best thing that can be said about the 1965 publication is that it promoted debate and experimentation', its impact on medical culture was enormous.
Following this line of thinking, Shelden implanted the first electrode to stimulate the trigeminal nerve in 1967, and Shealy et al. implanted the first SCS electrodes. In 1973, Mazars et al. and Hosobuchi et al. proposed deep brain stimulation (DBS). The following year, Shealy proposed transcutaneous electrical nerve stimulation (TENS) to assess the advisability of implantation.

Traditional SCS  

SCS involves the implantation of electrodes in the epidural space. It was first performed in 1967 by Shealy et al., who performed thoracic laminectomy and implanted platinum plates sutured to the dura mater. This procedure became so widely used in the US during the second half of the 1960s that its indiscriminate use led to unsatisfactory results and a decline in interest in the method until the early 1970s [Ray 1978; North 1993]. During this period, the percutaneous insertion of temporary electrodes was proposed to test patients before definitive implantation [Hosobuchi et al. 1972; Erickson 1975]. Subsequently, the percutaneous technique, which was previously only used for testing, was adopted for definitive implantation (Zumpano & Saunders, 1976; North et al., 1977). Initially proposed solely for analgesic purposes, spinal cord stimulation (SCS) was later recognised as capable of interfering with various autonomic functions. It has been used to control urinary retention in paraplegics (Nashold et al., 1972), bladder incontinence (Cook et al., 1976; Augustinsson et al., 1982), angina pectoris (Murphy & Giles, 1987), and Raynaud's phenomenon in scleroderma (Zina et al., 1992; Sciacca et al., 1992). It has also been used to prevent damage from cerebral vasospasm.
What is known for certain is that SCS exerts an analgesic effect in certain types of neuropathic pain, but not in nociceptive pain. It also has an autonomic-vasodilatory effect, which is useful in treating peripheral artery disease and angina pectoris. Furthermore, due to its sympatholytic effect, SCS is an important contrast to CRPS-1 in terms of pathogenesis.
The hypotheses formulated to explain the mechanisms of action of SCS are summarised below: the theory of activation of large myelinated afferents; the theory of conduction block; and the theory of glial activation block.

The theory of the activation of large myelinated afferents

Although the gate control theory continues to be discussed in this context as if it were a religious tradition, it is only implicated in the mechanism of action of SCS with regard to Aβ fibres that run parallel to the dorsal horn of the spinal cord and activate the inhibitory interneuron of the gelatinous substance. In reality, this has a modest analgesic effect that only affects nociceptive pain conducted by C fibres. This is almost irrelevant in the case of SCS as it does not affect the control of neuropathic pain from axonal neuropathy, which is more important.
Regardless of the gate control theory, the theory of the activation of large myelinated afferents remains the most widely accepted of the theories proposed. According to this theory, activation of Aβ fibres in the posterior columns of the spinal cord evokes orthodromic impulses. Upon reaching the nuclei of the gracile and cuneate fascicles, these impulses activate supraspinal centres, from which descending inhibitory pathways originate in the dorsolateral funiculus (DLF). Antidromic impulses travel along collaterals directed to the superficial layers of the dorsal horn of the spinal cord (Figure 1). In both pathways, Aβ fibres activate inhibitory interneurons in the dorsal horn of the spinal cord. The descending pathways in the DLF activate the 5-HT inhibitory receptors of the second neuron, which explains the analgesic effect in axonal neuropathic pain. The collaterals directed to the superficial layers of the dorsal horn of the spinal cord activate the inhibitory interneurons of the gelatinous substance, as well as the GABA_B receptors in the second neuron and the GABA_B receptors in the neuron of sympathetic origin. This contributes to the analgesic effect in axonal neuropathic pain.

Figure 1 - Mechanism of action of SCS based on the theory of activation of large myelinated afferents. The electrode placed behind the dorsal columns (DC) activates their fibers orthodromically, increasing the impulses that reach the nuclei of the gracile and cuneate fascicles and thus the activity of the descending pathway in the dorsolateral funiculus (DLF) and antidromically activating the collaterals that reach the basal laminae of the dorsal horn of the spinal cord, connecting to the inhibitory GABA-B receptors of the second neuron and the neuron of sympathetic origin.

Theory of conduction block in Aδ and C fibers  

At a time when the analgesic effect of spinal cord stimulation (SCS) was widely accepted to be the result of the activation of large myelinated afferents, Larson et al. [1974, 1975] challenged this theory. These authors reported the analgesic efficacy of electrostimulation of the anterior half of the spinal cord (see Figure 2) and hypothesised that pain relief from SCS was due to conduction block in the spinothalamic tract rather than activation of the posterior columns. Following this line of thinking, Hoppenstein (1975a, 1975b) achieved pain relief with a current intensity 30 times lower when the electrodes were placed in front of the lateral spinothalamic tract than when they were placed posteriorly. He also observed that, in the former case, pain relief was contralateral to the stimulated site.

Figure 2 - Electrostimulation of the anterior half of the spinal cord
 

In line with the observations of Larson and Hoppenstein, I have personally noted that patients undergoing percutaneous cervical cordotomy often report the temporary disappearance of contralateral pain as soon as the electrode penetrates the lateral spinothalamic tract during sensory stimulation at 75 Hz, even before the lesion is reached. During the same period, Campbell and Taub (1973) and Ignelzi and Nyquist (1976) formalised the hypothesis that, rather than adding impulses to the nerve, electrostimulation reduces the number of impulses, causing a conduction block.
Supporting the conduction block hypothesis, Campbell (1980) observed that increasing the intensity of electrical stimulation of a peripheral nerve first raises the excitation threshold for tactile stimuli, followed by nociceptive stimuli, until the skin is completely anaesthetised. Based on these observations, Campbell ruled out the possibility that neurostimulation activates large-calibre fibres and considered it more likely that it causes conduction block in all afferent nerve fibres. Furthermore, due to their greater surface-to-volume ratio, small-calibre fibres would be blocked at a lower stimulation frequency than that required for larger-calibre fibres.
Campbell defined this phenomenon as a conduction block related to the stimulation frequency. In agreement with Adelman and Fitzhugh (1975), he considered it to be due to the accumulation of K⁺ ions around the axon, which reduces the conductance of the Na⁺ channels. In practice, the stimulating current would collide with the electrical stimulus travelling orthodromically along the nerve fibres, blocking it (the collision current theory). Campbell also observed that, when treating lumbosacral pain, the electrodes can be placed behind the cauda equina rather than the spinal cord. From this position, it is unlikely that the electrodes will activate the posterior cords; however, it is likely that they will block the conduction of the nociceptive fibres of the first neuron before they enter the spinal cord. Indeed, the conduction block theory can explain the analgesic effects of electrostimulating peripheral nerves or the anterolateral quadrant of the spinal cord or cauda equina, but not the posterior cords.

High-frequency SCS and Burst-SCS: the “crisis” caused by new technological acquisitions

Compared to the approach that was almost blindly accepted until around 15 years ago, SCS must now be re-examined in light of new technological advances, such as high-frequency SCS and Burst SCS. These techniques have the advantage of being effective in treating lumbar pain (which is often not clearly defined, but is likely to be of a nociceptive nature), and they are easier to implement as they do not require the patient to cooperate by searching for paresthesia. This means that they can be performed under general anaesthesia.

Figura  3 – Posizionamento degli elettrodi nella SCS ad alta frequenza

Tecnicamente, per il controllo del dolore lombosacrale e dell’arto inferiore si deve posizionare un doppio elettrodo ottopolare fra la VIII e la XI vertebra toracica con il primo contatto di un elettrodo a livello della limitante superiore del corpo della VIII vertebra toracica e l’ultimo contatto del secondo elettrodo a livello della limitante inferiore del corpo della XI vertebra toracica (Figura 3) e per il controllo del dolore cervicobrachiali e dell’arto superiore un doppio elettrodo ottopolare fra la C2 e C7 in corrispondenza della linea mediana, con minor rischio di perdita di efficacia per sposizionamento degli elettrodi e senza le fastidiose variazioni di intensità delle parestesie con i cambiamenti di posizione .33.  
Resta il problema di capire se con queste nuove tecniche si esercita una “stimolazione” ed una “inibizione indiretta” o si fa qualcosa di completamente diverso ed è sconcertante che anziché mettere a punto nuove tecnologie per raggiungere un obbiettivo, ci si debba porre il problema di capire quali meccanismi esse utilizzano per raggiungere lo scopo!
Per cominciare, non è chiaro se la SCS ad alta frequenza e la Burst SCS siano la stessa cosa, anche se secondo DeRidder et al. .34, entrambe agiscono “modulando” (termine non esplicativo che può significare riduzione diretta dell’attività delle fibre afferenti nocicettive o aumento dell’attività delle fibre che attivano i circuiti inibitori) le vie mediali del dolore e sarebbero equivalenti: di fatto, quel che le accomuna è che non evocano le parestesie perché la bassa intensità della corrente erogata (Tabella 1) non è sufficiente per attivare le afferenze Aβ dei cordoni posteriori.
Per la maggior parte degli osservatori la SCS ad alta frequenza è più efficace della SCS convenzionale .35, .36, .37: inoltre, frequenti segnalazioni riguardano il fatto che, contrariamente alla SCS tradizionale, quella ad alta frequenza controlla il dolore lombare .38, .39, 40, .41, .42, .43, .44, .45, .46.
La Burst SCS (segnalata per la prima volta da DeRidder e Coll. .47) consiste in pacchetti di 5 impulsi con una frequenza di 500 Hz e un PW di 1000 μsec che vengono inviati 40 volte al secondo cioè con intervalli che mimano la naturale tendenza alle scariche del SNC e produrrebbero l’effetto antalgico “sincronizzandosi” con esse .48, .49.

Frequenza (Hz) PW (μsecondi) Intensità (mA)
SCS tradizionale 50-100 50-500 3-8
SCS ad alta frequenza 10000 30 1-6
Burst SCS 500
(intra burst frequency) 40
(inter burst frequency) 1000 2-3
Tabella 1 – Confronto fra i parametri della stimolazione nella SCS tradizionale, nella SCS ad alta frequenza e nella Burst SCS. Notare che l’intensità di corrente nella SCS ad alta frequenza è la metà di quella della SCS tradizionale

Purtroppo, dall’esame della copiosissima letteratura sull’argomento, non è chiaro con quale meccanismo agiscono queste nuove tecniche e la sconfortante impressione che se ne ricava è che la cosa interessi poco (…funzionano e questo basta!). Quel poco che si può trovare nella letteratura sui meccanismi di azione, è l’osservazione che la Burst SCS agirebbe riducendo la scarica degli WDR-n nel CDMS .50, che la SCS ad alta frequenza e la Burst SCS agiscono modulando le vie mediali del dolore .51, .52 e che l’intensità della corrente erogata per attuare la SCS ad alta frequenza è inferiore a quella necessaria per produrre l’attivazione delle grandi afferenze mieliniche e quindi evocare le parestesie ma sufficiente a indurre il blocco di conduzione nelle piccole fibre C a livello segmentale (forse nel tratto di Lissauer) cui sarebbe dovuto l’effetto antalgico .53.
Figura  4 – Meccanismo di azione della SCS in base alla teoria del blocco di conduzione nelle fibre A e C. Gli elettrodi determinano il blocco di conduzione nel SAM (controllo del dolore neuropatico), del neurone di origine del simpatico (effetto simpaticolitico) e del tratto di Lissauer (controllo del dolore nocicicettivo segmentale)

Rivalutazione della teoria del blocco di conduzione

Per la SCS ad alta frequenza e la Burst-SCS sembra assolutamente necessario ipotizzare un meccanismo di azione diverso da quello dell’attivazione delle fibre Aβ e l’attenzione non può che rivolgersi al meccanismo del blocco di conduzione non delle fibre Aβ ma delle fibre C nelle vie centrali (Figura 4), vale a dire nel sistema ascendente multisinaptico (SAM). In sintesi, si può ritenere che, in assenza dell’attivazione delle fibre Aβ che salgono nei cordoni posteriori e quindi dell’attivazione del meccanismo inibitorio che scende nel FDL, l’effetto antalgico della SCS ad alta frequenza sia dovuto per quanto riguarda il dolore da neuropatia assonale al blocco di conduzione nel SAM, per quanto riguarda il dolore nocicettivo al blocco di conduzione nel tratto di Lissauer (con effetto segmentale) e per quanto riguarda il blocco simpatico al blocco dell’attivazione dei neuroni di origine delle fibre simpatiche (con effetto segmentale).

Conclusioni

Sulla base delle considerazioni precedenti, sembra davvero che vada messo in discussione il termine “stimolazione” che è apparentemente intuitivo quando si applica la corrente elettrica su un nervo periferico ma al tempo stesso fuorviante perchè ben diverso è se, con l’applicazione della corrente elettrica esogena, si aumenta l’attività elettrica nel nervo (cioè se ne “aumena la conduzione” e quindi lo si “stimola”) o si riduce quell’attività (cioè si “blocca la conduzione”). D’altra parte, sostituire il termine “stimolazione del nervo” con “blocco della conduzione nel nervo” implica l’accettazione di un meccanismo di azione ben definito e, considerando per la SCS l’interruzione funzionale delle afferenze, avvicina concettualmente quest’ultima alle tecniche neurolesive con la prerogativa di agire selettivamente sul SAM e quindi di essere efficace nel dolore da neuropatia assonale e forse anche il quello da deafferentezionebbe, sul tratto di Lissauer e quindi di essere efficace nel dolore nocicettivo lombare, e sulle cellule di origine del simpatico e quindi esercitando un effetto simpaticolitico diretto.

Conflitto di interessi

L'autore dichiara che l'articolo è stato scritto in assenza di conflitto di interessi
Open Access-license (CC BY-NC 4.0)
Read Non-Commercial license

Published

19th September 2025  

Re

1) Headache Clasfsification Committee of the International Headache Society (IHS) The International Classification of Headache Disorder-ICHD-3. 2018.
2) International Classification of Orofacial Pain. 1st edition. January 30, 2020
3) Kumar A, Brennan MT. Differential diagnosis of Orofacial pain and temporomandibular disorder. Dent Clin N AM 57 (2013) 419-428.
4) Cruccu G, Finnerup NB, Jensen TS, Scholz J et al. Trigeminal neuralgia: new classification and diagnostic grading for practice and research. Neurology. June, 2016
5) Baad-Hansen L and Benoliel R. Neuropathic Orofacial pain: Facts and fiction. Cephalalgia 2017; 37(7) 670-679,
6) Benoliel R and May A. Orofacial migraine-A Narrative Review. Clin Med 2024, 13, 5745.
7) Benoliel R and Gaul C, Persistent Idiopathic Facial Pain. Cephalalgia 2017;  37(7) 680-691.
8) Nasri-Heir C, Zagury JC, Thomas D et al. Burning Mouth syndrome: corrente concept. J Indian Prosthodont Soc 2015; (4):300-7.
9) Macfarlane TV, Blinkhorn AS, Davies RM, Kincey J et al. Oro-facial pain in the community: prevalence and associated impact. Community Dentistry and Oral Epidemiology/ Vol 30, Issue 1.
10) Shaefer JR, Khawaja SN, Bavia PF. Sex, Gender and Orofacial Pain. Dent Clin N Am 62; 2018: 665-682.
11) Fillingim RB, Ness TJ, Sex-related hormonal on Pain and analgesic responses. Neurosci Biobehav Rev 2000; 24(4):485-501.
12) Fillingim RB, King CD, Ribeiro-Dasilva MC, et al. Sex, gender and pain: a review of recent clinical and experimental findings. J Pain 2009; 10(5): 447-85.
13) Sanford SD, Kersh BC, Thorn BE. Et al. Psychosocial mediators of sex differences in pain responsivity. J Pain 2002; 3(1):58-64.
14) Jääskeläinen SK and Woda A. Burning Mouth Syndrome. Cephalalgia 2017; 37(7) 627-647.
15) Feller L, Fourie J, Bouckaert M, Khammissa RAG et al. Burning Mouth Syndrome: Aetiopathogenesis and Principles of Management. Pain Research and Management Volume 2017; :1926269.doi: 10.1155/2017/ 1926269. Epub 2017 Oct 18.
16) Woda A and Pionchon P. A unified concept of idiopathic Orofacial pain: clinical features. J Orofacial Pain 1999; 13:172-184.
17) Forssell H., Jääskeläinen S., Tenovuo O. Et al. Sensory dysfunction in burning mouth syndrome. Pain 2002; 99:41-47.
18) Jääskeläinen SK., Pathophysiology of primary burning mouth syndrome. Clin Neurophysiol 2012; 123: 71-77.
Torna ai contenuti